Natalie N. Beams

office mailing address: Suite 203 Claxton / 1122 Volunteer Blvd. / Knoxville, TN 37996 GitHub: <u>nbeams</u> | <u>nbeams.github.io</u>

Education

University of Illinois at Urbana-Champaign — Urbana, IL, USA	
Ph.D. in Theoretical & Applied Mechanics Thesis title: "High-order hybrid numerical methods using Green's functions and finite elements"	2017
M.S. in Theoretical & Applied Mechanics	2014
University of Oklahoma — Norman, OK, USA B.S. in Mechanical Engineering Summa cum Laude	2010

Programming & Software

- Programming languages: C/C++, Python (numpy, scipy, pandas, matplotlib), Fortran (90/95), Matlab
- > Parallel implementation: CUDA/HIP and SYCL on GPUs, OpenMP, some experience with MPI
- > Proficient with git version control, GitHub, Bitbucket; LaTeX and Overleaf for document preparation
- Experience with cluster computing environments (Slurm and PBS job schedulers)
- Contributor to open-source software packages: libCEED (<u>https://github.com/CEED/libCEED</u>), MFEM (<u>https://github.com/mfem/mfem</u>), MAGMA (<u>https://bitbucket.org/icl/magma</u>)

Experience

Innovative Computing Laboratory, University of Tennessee — Knoxville, TN	
Research Assistant Professor	Feb. 2024 —
Research Scientist I, Linear Algebra group	Aug. 2019 —
• Contributed to two DOE Exascale Computing Project (ECP) efforts, with a focus on GPU computing and mixed-precision numerical methods	Feb. 2024
 Ported CUDA backends to HIP in <u>libCEED</u>; aided in maintenance, improvement, and expansion of multiple GPU backends 	
 Leading efforts to port the <u>MAGMA</u> library to SYCL Expanded interoperability between <u>MFEM</u> and <u>Ginkgo</u> libraries 	
 Discussed in Enabling Cross-Project Research to Strengthen Math Libraries for Scientific Simulations, episode 95 of ECP's "Let's Talk Exascale" podcast 	
Rice University — Houston, TX	
Postdoctoral Research Associate, Computational and Applied Mathematics	Aug. 2017—
 Designed and implemented a shared-memory parallel fast direct solver for the Helmholtz equation on multicore CPUs 	Aug. 2019
 Using OpenMP and the Intel MKL library, achieved ~10-15x speedup in build stage of solver and ~2x in solve stage vs. serial code for ~1 million unknowns 	

Natalie N. Beams

University of Illinois at Urbana-Champaign — Urbana, IL	
Graduate Research Assistant	Fall 2013—Spr 2017 (excl. Fall 2014)
Computational Science & Engineering (CSE) Fellow College of Engineering Carver Fellow	Fall 2011—Spr 2013 Fall 2010—Spr 2011
• Developed a new hybrid finite element—integral equation solver for interface problems and embedded meshes	
Completed initial implementation of a finite-element-based particle-particle- particle-mesh method for N-body problems	
University of Oklahoma — Norman, OK	
Undergraduate Academic Assistant	Fall 2009—Spr 2010
Created prototype GUI tools within an educational robotics SDE to aid novice computer programmers	
Trane Residential Systems — Tyler, TX	
Design Engineering Intern	June 2009—Aug. 2009
 Assisted in company switch to Computer Aided Design (CAD) of wiring harnesses 	
Created six wiring diagrams and one complete harness design	

Papers

- *Three-precision algebraic multigrid on GPUs,* Y. M. Tsai, **N. Beams,** and H. Anzt, Future Generation Computer Systems 149, 2023
- *Mixed Precision Algebraic Multigrid on GPUs,* Y. M. Tsai, **N. Beams**, and H. Anzt, Parallel Processing and Applied Mathematics: 14th International Conference, PPAM 2022, Revised Selected Papers, Part I, 2023
- *libCEED: Fast algebra for high-order element-based discretizations,* J. Brown, A. Abdelfattah, V. Barra, N. Beams, J-S. Camier, V. Dobrev, Y. Dudouit, L. Ghaffari, T. Kolev, D. Medina, W. Pazner, T. Ratnayaka, J. Thompson, S. Tomov, Journal of Open Source Software 6(63), 2021
- *GPU algorithms for Efficient Exascale Discretizations,* A. Abdelfattah, V. Barra, **N. Beams**, *et al.*, Parallel Computing 108, 2021
- *Efficient exascale discretizations: High-order finite element methods,* T. Kolev, P. Fischer, M. Min, J. Dongarra, J. Brown, V. Dobrev, T. Warburton, S. Tomov, M. S. Shephard, A. Abdelfattah, V. Barra, **N. Beams**, *et al.*, The International Journal of High Performance Computing Applications, 2021
- *High-Order Finite Element Method using Standard and Device-Level Batch GEMM on GPUs*, **N. Beams**, A. Abdelfattah, S. Tomov, J. Dongarra, T. Kolev, Y. Dudouit, IEEE/ACM 11th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA), 2020
- A parallel implementation of a high order accurate solution technique for variable coefficient Helmholtz problems, N. N. Beams, A. Gillman, and R. Hewett, Computers and Mathematics with Applications 79(4), 2020
- *High-order Finite Element—Integral Equation Coupling on Embedded Meshes*, N. N. Beams, A. Klöckner, and L. N. Olson, J. Comp. Phys. 375, 2018
- A Scalable Fast Method for N-body Problems Based on Exact Finite Element Basis Screen Functions, N. N. Beams, L. N. Olson, and J. B. Freund, SIAM J. Sci. Comput. 38(3), 2016

Presentations

- Leveraging Mixed Precision to Accelerate High-Order Finite Element Methods on GPUs, N. Beams, J. Brown, J. Thompson, Y. Dudouit, and W. Pazner, SIAM Conference on Parallel Processing for Scientific Computing (PP), 2022
- *MAGMA Backend and its Portability in Accelerating LibCEED using Standard and Device-Level Batched BLAS,* **N. Beams**, A. Abdelfattah, S. Tomov, J. Dongarra, SIAM Conference on Computational Science and Engineering (CSE), 2021
- *Coupling MFEM with Ginkgo for efficient preconditioning on GPUs,* **N. Beams**, T. Kolev, W. Pazner, H. Anzt, T. Grützmacher, P. Nayak, and T. Ribizel, CEED 4th Annual Meeting, 2020
- An Efficient and High Order Accurate Solution Technique for Three Dimensional Elliptic Partial Differential Equations, N. N. Beams and A. Gillman, SIAM Conference on Computational Science and Engineering (CSE), 2019
- A Parallel Implementation of a Hierarchical Spectral Solver for Variable Coefficient Elliptic Partial Differential Equations, N. N. Beams, A. Gillman, and R. Hewett, International Conference on Spectral and High Order Methods, 2018
- *A parallel implementation of a high order accurate variable coefficient Helmholtz solver*, **N. N. Beams**, A. Gillman, and R. Hewett, SIAM Conference on Applied Linear Algebra, 2018
- *Targeting Interface Problems at Scale with Coupled Elliptic Solvers*, N. N. Beams, A. Klöckner, and L. Olson, 6th Joint Laboratory for Extreme-Scale Computing Workshop, 2016
- A Scalable Method for Cellular Blood Flow and Other N-body Systems, N. N. Beams, L. N. Olson, and J. B. Freund, University of Illinois at Urbana-Champaign Computational Science & Engineering Annual Meeting, 2013
- Ordered and chaotic flow of red blood cells flowing in a narrow tube, **N. N. Beams** and J. B. Freund, 66th Annual Meeting of the American Physical Society Division of Fluid Dynamics, 2013
- *Stability of red cells flowing in narrow tubes,* **N. N. Beams** and J. B. Freund, 64th Annual Meeting of the American Physical Society Division of Fluid Dynamics, 2011
- *Program Visualization Tool for Educational Code Analysis,* **N. N. Beams**, 2010 Global Conference on Educational Robotics

Posters

- A parallel implementation of a high order accurate variable coefficient Helmholtz solver, N. N. Beams, A. Gillman, and R. Hewett, Rice Oil & Gas HPC Conference, 2018
- A method for N-Body problems based on exact finite element basis screen functions, N. N. Beams, L. N. Olson, and J. B. Freund, SIAM Conference on Computational Science and Engineering, 2015

Awards & Honors

Best Workshops Paper Award, PPAM22 (for <i>Mixed Precision Algebraic Multigrid on GPUs</i> with Y. M. Tsai and H. Anzt)	2022
Recipient of Early Career Travel Award for SIAM Conference on Applied Linear Algebra	2018

Natalie N. Beams

Invited participant of "Integral Equation Methods, Fast Algorithms and Their Applications to Fluid Dynamics and Materials Science" International Program Institute for Computational and Experimental Research in Mathematics (ICERM) and Hong Kong University of Science and Technology (HKUST)	2017
Named to "List of Teachers Ranked as Excellent by Their Students" TA for TAM 335, Introductory Fluid Mechanics	Fall 2014
University of Illinois Computational Science & Engineering Fellow	2011-2013
University of Illinois Carver Fellow One of four incoming graduate students chosen across the College of Engineering	2010-2011
Outstanding Sophomore in Mechanical Engineering	2007-2008

Service

Reviewer for: SIAM Journal of Scientific Computing Parallel Computing Computing Computer Physics Communications Program committee member: International Supercomputing (ISC) 2023 — Workshops 51st International Conference on Parallel Processing (2022) — Algorithms International Supercomputing (ISC) 2022 — Workshops 50th International Conference on Parallel Processing (2021) — Algorithms 35th IEEE International Parallel & Distributed Processing Symposium (2021) — System Software

Officer for MechSE Graduate Women student organization

2012-2014